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The problem of simulating the motion of evolving surfaces with junctions ac-
cording to some curvature-dependent speed arises in a number of applications. By
alternately diffusing and sharpening characteristic functions for each region, a variety
of motions have been obtained which allow for topological mergings and breakings
and produce no overlapping regions or vacuums. However, the usual finite difference
discretization of these methods is often excessively slow when accurate solutions
are sought, even in two dimensions. We propose a new, spectral discretization of
these diffusion-generated methods which obtains greatly improved efficiency over
the usual finite difference approach. These efficiency gains are obtained, in part
through the use of a quadrature-based refinement technique, by integrating Fourier
modes exactly and by neglecting the contributions of rapidly decaying solution tran-
sients. Indeed, numerical studies demonstrate that the new algorithm is often more
than 1000 times faster than the usual finite difference discretization. Our findings are
demonstrated on several exampleg.1998 Academic Press

Key Words:diffusion; interface; motion by mean curvature; multiple junctions;
spectral method.

1. INTRODUCTION

Inavariety of applications, one wants to follow the motion of a front that moves with sc
curvature-dependent speed. Such motions can be particularly challenging to approx
when more than two phase regions are present because junctions of moving surfac
occur. To simulate the evolution of such models, a number of numerical methods have
developed.

Front tracking methods (see, e.g., [10, 5] and references therein), are often well-s
for curves that never cross because they explicitly approximate the motion of the inte
rather than a level set of some higher dimensional function. When line or planar segr
interact, however, decisions must be made as to whether to insert or delete segr
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Because complicated topological changes are often possible, front tracking methods cc
impractical to implement, especially in more than two dimensions.

Other approaches also have limitations. Monte Carlo methods for Potts models
introduce unwanted anisotropy into the motion, due to the spatial mesh [29], and are typic
too slow to find accurate approximations of the model. Phase field methods are o
inherently too expensive for practical computation [16] because they represent the inter
as an internal layer and, thus, require an extremely fine mesh (at least locally) to res
this layer.

To address these concerns for the case of pure mean curvature flow (i.e., each inte
moves with a normal velocity equal to its mean curvatidea method was proposed by
Merriman, Bence, and Osher (MBO) which alternately diffuses and sharpens characte
tic functions for regions [15, 16]. This method naturally handles complicated topologic
changes with junctions in several dimensions and has been rigorously proven to conv
when two phase regions are present [7, 2]. Furthermore, in the two-phase case, gener
tions based on this method and on the “threshold growth dynamics” of Gravner and Griffe
[9] produce a variety of motions which depend on the principal curvatures of the surface
the local normal direction [13, 14, 24]. Thesenvolution-based methodse particularly
interesting because they may be viewed as the continuum limit of certain cellular auton
evolution rules [9, 14, 24]. In the multiphase case, a generalization appropriate for the ¢
roximation of grain growth models [1, 4, 20] has been developed and studied [23]. T
diffusion-generated approach allows each interf&ige to move with a normal velocity,

vij = Yijkij + & — €, @)

wheree, represents the constant bulk energy for pitte phase region (see Fig. 1). Unfortu-
nately, the usual finite difference discretization of the MBO-method and its generalizatic
is often exceedingly slow when accurate results are sought, even in two dimensions.
Other methods for approximating the motion of interfaces have also been develor
The level set method of Osher and Sethian [18], for example, computes arbitrary curvat
dependent surface motion, including topological changes. Standard numerical PDE met
apply to accurately and efficiently discretize the equations for motion [19]. Although we
suited for a wide variety of two phase problems, the original level set method does not af
to the motion of junctions. An extension to this case was ultimately developed in [16]. T
extension treats the triple point in a similar manner to the MBO-method described ab

Q)

Va3 = Y3z + €y- €3
T23(t)

FIG. 1. The interfaces[;;, move with a normal velocity;; = y;jkj +& —€; and are subject to angles
01, 02, O3.



DIFFUSION-BASED MEAN CURVATURE MOTION 605

(which suggests a similar order of accuracy) but which has several additional difficult
In particular, “vacuums” (parts of the domain that do not contain any phase region) f
near junctions and a “redistancing” is required at each step of the algorithm [16]. This e
method also “lacks (so far) a clear theoretical basis” [30] and remains largely unexplo
numerically.

More recently, a variational approach [30] based on the motion of level sets has |
proposed to approximate the multiphase model (1). This interesting approach is espe
well suited for treating problems with additional constraints. Unfortunately, it is unable
approximate many problems involving more than three phase regions. This is easily
since onlyr independenis; may be prescribed, whereis the number of phase regions.
Furthermore, this method limits angles to the classical condition (see, e.g., [27])

sin(6y) _ sin(8,) _ sin(63)
V23 Y13 Y12

at triple points.

In this paper, we propose a new, spectral discretization for the diffusion-generated n
ods which obtains greatly improved efficiency over the usual finite difference discretizat
Although these algorithms are given (for simplicity) for the MBO-method, we note that tt
may also be applied to its generalizations described in [24, 14, 23]. Our algorithms, w
applied to the MBO-method give a simple, fast way of approximating motion by me
curvature and, when applied to convolution-based methods, provide efficient comg
tional schemes for the limiting motion of certain cellular automata rules or more gen
anisotropic curvature-dependent motions [24]. Furthermore, our algorithms when apy
to the generalizations of [23] give a practical tool, not available hitherto, for accurat
treating a wide variety of motions described by the multiphase model (1). An outline of
paper follows.

In Section 2, we give the MBO-method for two-phase and multiphase problems. For
case of the finite difference discretizations originally proposed [15], the selection of
step size is discussed and several limitations of the method are identified.

In Section 3, a new spectral method for the realization of the MBO-method is propo
and described in detail. A spatial discretization is given and an efficient quadrature
calculating the corresponding Fourier coefficients is provided. This quadrature obtain:
curate approximations to the front using a piecewise linear approximation to the sur
and a gradual refinement technique. Unequally spaced transform methods for the
evaluation of the Fourier coefficients are also applied.

Section 4 gives a comparison of the proposed method and the usual finite differ
approach. In particular, numerical experiments are presented to illustrate the effici
gains which arise from our method.

In Section 5, we use our algorithms to examine the numerical convergence properti
the MBO-method and apply our algorithms to the motion by mean curvature of surfa
This section also demonstrates that extrapolation can be used in conjunction with our me
to produce improved estimates of certain quantities of interest (e.g., phase areas).

2. THE MBO-METHOD

An algorithm for following interfaces propagating with a normal velocity equal to me:
curvature was introduced by Merriman, Bence, and Osher [15, 16]. In this section,
describe the method for the two-phase and multiple-phase problems.



606 STEVEN J. RUUTH

2.1. The Two-Phase Problem

Suppose we wish to follow an interface moving with a normal velocity equal to its me;
curvature. The motion of such a surface may be approximated using the MBO-methoo
two regions:

MBO-METHOD (Two regions).

BEGIN
(1) SetU equal to the characteristic function for the initial region.
1, if x belongs to the initial region

i.e, setU(x,0) = {O otherwise

REPEAT for all stepsj, from 1 to the final step:
BEGIN
(2) Apply diffusiont to U for some timeAt.
U; = VU,
au/on=0 onoD
starting fromU (x, (j — 1)At).
(3) “Sharpen” the diffused region by setting

Co 1 ifUX jAD > 3
U Jay = {O, otherwise
END

END

For any timet, the level sefx : U(x,t) = %} gives the location of the interface. Note that
it is essential to apply the diffusion for only a short tinagt, since only the initial motion
generated by the diffusion is equal to motion by mean curvature (see [7, 2] for a prec
statement).

i.e, findU(x, jAt) using{

2.2. Multiple Regions

To obtain a normal velocity equal to the mean curvature for symmetric junctions (e.
a 120-120-120 degree junction in two dimensions), we may apply the MBO-method
multiple regions:

MBO-METHOD (Multiple (r) regions).

BEGIN
Q) Fori=1,...,r
SetU; (x, 0) equal to the characteristic function for tité region.

REPEAT for all stepsj, from 1 to the final step:
BEGIN
(2) Fori=1,...,r, starting fromU; (x, (j — 1)At),
Apply diffusion toU; for some time sliceAt.

1Here we have selected zero flux boundary conditions to ensure that the curve meets the boundary at
angles, as is appropriate for certain grain growth models [5]. Alternatively, one may minimize the effects of
boundary by selecting nonreflecting boundary conditi@ds,/an? = 0 (cf. [30]), or use Dirichlet conditions to
produce a constrained motion.
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% =V,

)
i _
Sy = 0 onoD.

i.e., find Uj(x, jAt) using{
(3) “Sharpen” the diffused regions by setting the largésequal to 1 and the
others equal to O for each point on the domain.
END

END

For any timet, the interfaces are given naturally as the boundaries of the characteristic:

2.3. Time Step Selection

To accurately resolve the motion of features of the interface, it is also important to se
At appropriately. Once a sufficiently smallt is selected, a spatial discretization mus
be chosen that can resolve the motion of the interface. For the case of a finite differ:
discretization, the level set = % must move at least one grid point; otherwise the interfac
remains stationary [16]. This produces the restriction that

grid spacingk (speed of motion of the interfage At.

Letting« be the curvature andx the grid spacing, we arrive at a restriction Ax for the
finite difference approach [16],

AX K K At. 2

As we shall see, the restriction (2) does not appear for the method that we propo:
Section 3.

2.4. Limitations of Finite Difference Discretizations

Satisfying the restriction (2) derived in the previous section can be computationally
practical even for smooth, two-phase problems in two dimensions. Consider, for exan
evolving the boundary of a spiral-shaped region according to a normal velocity equal t
curvature. Since the local curvature of the boundary of such a problem can vary trer
dously, it may be impractical to satisfy (2) everywhere using a uniform mesh.

To achieve a more efficient finite difference algorithm, one might consider discretiz
the MBO-method by placing a narrow band of grid points around the front. However, e
this optimized finite difference approach can lead to a prohibitive number of operatior
each step of the method.

For example, consider the motion by curvature of a smooth curve. For such a curve
MBO-method is locally first order invt since each step of the method produce®ant?)
error in the position of the front [22]. To preserve the overall accuracy of the method, ¢
points must be at most a distan®gAt?) apart since each step produces an error which
comparable to the mesh spacing. Noting that the front travels a distaice per step of
the method, it is clear that a minimum 6f(1/ At®) grid points are needed to safely band :
curve (see, e.g., Fig. 2). Thus, a minimum(fl/ At3) operations per step are required tc
preserve the overall accuracy of the method, which is often prohibitively expensive w
accurate results are sought.

A further limitation of the finite difference approach is that the error is not regul:
Specifically, very small differences in the position of the level & efore sharpening
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FIG. 2. A banded finite difference mesh.

can produce jumps in the front location after sharpening. This type of error is undesira
because it makes the construction of higher order accurate, extrapolated results imprac
Figures 3 and 4 illustrate how a small change in the position of the levef3eiah lead to

a jump in the front location after sharpening when using finite differences. Our propo:s
method can essentially eliminate spatial errors by using a local refinement with a piece\
linear approximation of the front. In smooth, two-phase problems, the remaining errot
the front position is of the form

c(A1)? + O(AD)3,

wherec depends of the local geometry of the problem [22]. Thus, in two phase problel
we expect that extrapolation int can be used in conjunction with our proposed metho
to produce higher order accurate results. In the multiphase case the form of the error is
known, but numerical studies indicate that improved results are still obtained. See Secti
and [21, 22].

To avoid the limitations of the original finite difference approach, a new, spectral meth
for realizing the MBO-method is introduced in the next section.

3. ANEW SPECTRAL METHOD

As we shall see later in this section, accurate computation of solutions using the u:
finite difference discretization of the MBO-method can be expensive, even for simj

Sharpening
ﬁ

FIG. 3. Sharpening a shape.
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FIG. 4. Sharpening a perturbed shape.

two-dimensional problems. Since we are mainly interested in three-dimensional probl
or problems involving more than two phases, a faster method is desired. This sectiol
scribes a new spectral method for realizing the MBO-method which is typically much fa:
than the usual finite difference approach.

For notational simplicity, the algorithm focuses on the two-phase case over the don
D =10, 1] x [0, 1]. Certain extensions to three spatial dimensions and more phases are
discussed.

3.1. Discretization of the Heat Equation

Carrying out diffusion-generated motion by mean curvature requires us to solve the
equation

U = Au,

au 3
— =0 onoD

an

repeatedly over time intervals of (possibly variable) length starting from the charac-
teristic function of the region to be followed. Over any of these time intervataay be
approximated by the Fourier cosine tensor product,

n—-1
Uy, t) = cij exp(—m2[i% + ][t — tsward) cOSTiX) COST]Y) @
i,j=0
for tsart < t < tsart+ At, Wheretgatis the time when the current interval starts.
One might expect that a Fourier spectral approximatiorufaould be unwise because
u is initially discontinuous at interfaces. We are only interested in the solution after a ti
At, however. After a sufficiently large timat, high frequency modes have dissipatec
Since the problem is linear, different modes do not interact and thus there is never a ne
approximate high frequency modes (hot even igas when high frequency modes make
an important contribution to the solution). For this reason, an accurate approximation f
at time At can be obtained using far fewer basis functions than might otherwise might
expected. Indeed, to approximate the position of the front to within a distageg our
implementations simply select arsatisfying

n > +/|In(e)|/m2At (5)

and verify the corresponding results by repeating the calculation with a difie{sat also
[22]).
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3.2. Calculation of the Fourier Coefficients

The values of the Fourier coefficients;, of Eq. (4) must still be determined at the
beginning of each time step (i.e., immediately following the sharpening of the previo
step). In fact, we calculate these coefficients as part of the sharpening step using an ade
guadrature method rather than a pseudospectral method. Begin by defining

1
to be the approximation of the phase we are following. By multiplying Eq. (4) at tim

t =tgart By COSwiX) cogjy), integrating over the domain, and simplifying via the usual
orthogonality conditions, we find

1,1
Gj =ozi,-// U (X, Y, tstar) COS(TiX) coSjy) dx dy,
0J0

where
1, fi=j=0
=94 ifi#0j#0 (6)
2, otherwise
Immediately after sharpening,
1 ifxy)eR
Uiyt = {O, otherwise

which implies that

Cij :aij//cos(nix)cos(njy)dA. (7)
R

Thus, simple functions must be integrated over a complicated, nonrectangular reg
R:. This may be accomplished by recursively subdividing the domain (cf. [26, 25]), as \
illustrate for the regionR, given in Fig. 5a.

We begin by evaluatingy at the corners of a number of equally sized subregions, ¢
as to capture the large-scale features of the shape. Typicadlp subregions are selected

o 1 [ 1

FIG. 5. Subdividing the domain into its coarsest subregions: (a) initial red®(h) coarsest subdivisions.
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because the correspondidgvalues can be evaluated in ji3tn? log(n)) operations using a
fast Fourier transform. If the phase at all four corners of any subregion corresponds to w
then we assume that the subregion does not intersecRathd, hence, no contribution to
the Fourier coefficients is made. This case corresponds to the subregions of Fig. 5b v
have at least one dashed edge. If all four corners of a subre@iocorrespond to grey,
however, we assume th@c R and add a contribution;

aij//cos(nix)cos(njy)dA,
o]

to each of the Fourier coefficients;, for 0<i, j <n — 1. This case corresponds to the
subregions of Fig. 5b which have at least one thin, solid edge. Finally, if two phases oc
further subdivisions are carried out. We demonstrate this subdivision procedure for
subregion@Q, of Fig. 5b.

Becausd) is a mixed region, we divide it into quadrants, as shown in Fig. 6b. Since
phase color at all corner points of quadr&itis white, we assume that this quadrant doe
not intersect withR and, hence, does not contribute to the Fourier coefficients. For e:
of the remaining quadrant®?, Q3, and Qf, two phases occur, so further subdivision i
required. See Fig. 6¢.

Focusing on the refinement of the subregiQ#, we find that the phase of the upper right
hand corner ofQ} is different than that of the other corners. Th@, is also subdivided.
Corner points of the remaining subregions are grey, so we asQ4neR for k=2, 3, 4

{0.375, 0.875) {0.5, 0.875) {0.375, 0.87S) (0.5, 0.875)

{0.375,

s 0.75) r 0.75)

{0.375, 0.875) (0.5, 0.875) {0.375, 0.875) (0.5, 0.875)

c d

(0.375, 0.75) (0.5, 0.75) {0.375, 0.75) (0.5, 0.75)

FIG. 6. Dividing a subregion: (a) initial subregion; (b) one subdivision; (c) two subdivisions; (d) four su
divisions.
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and add contributions,

aij//cos(nix)cos(njy)dA,
Q5

to each of the Fourier coefficients;, for 0<i, j <n — 1. Recursive subdivisions of the
domain continue (see, e.g., Fig. 6d) until regions containing multiple phases can be se
approximated by some simple numerical technique.

3.3. Approximation of the Finest Subregions

In the previous section, a method was introduced for recursively dividing the dom:
into rectangles. At some point, however, we must stop subdividing and treat the finest c
of width h. This section discusses how to approximate the contributions to the Four
coefficients at the finest grid subdivisions.

3.3.1. Piecewise Linear Approximation for Two-Phase Problems

To produce a®(h3/ At +h?) approximation of the interface, a simplicial decomposition
of the region,R, with a piecewise linear approximation to the boundary can be used. \
now describe such a method for two-phase problems in two and three dimensions.

Two-dimensional problems.There are three main steps for approximating the integra
(7) over the finest grid subdivisions for two-phase problems in two dimensions. These
detailed below.

Stepl. Divide the square cell into two triangles. To simplify the implementation ©
Step 2, we begin by breaking the square subdomain into two triangles and consider ¢
separately.

Step2. Approximate regions using triangles. We next approximate the desired phi
with a number of triangular subregions. Details for this approximation method are n
given for each of the four possible cases.

Case0. If none of the corners of the triangle belongRp then we assume th&®
and the triangular subdomain do not overlap. No contribution to the Fourier coefficient:
made.

Casel. Ifone cornerisirR, then linear interpolation is used to determine a triangula
approximation to the subregion.

Case2. Iftwo corners are iR, then we represent the shape as the difference of shap
which are treated using Cases 1 and 3.

Case3. If three corners are iR, then we assume that the entire subdomain belonc
to R, and we approximate the integrals (7) over the entire subdomain.

We seek an estimate of the error produced by this step for a smooth curve. One so
of error occurs when smooth curves are approximated by line segments. By Fig. 7,
approximation produces af(h?) error in the position of the front, since the curvature is
independent ofi.

We also produce errors by replacing the actual front position with an interpolation.
this case we expect &(h®/ At) error, based on the one-dimensional studies given in [22

Taking into account both of the contributions to the error, we find that this triangul
approximation of regions produces @&th3/At + h?) error in the position of the front.
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- h—

1/K=radius of curvature

FIG. 7. Errors approximating curved segments.

Step3. Integrate over each triangular subregion. We are now left with the task of adc
a contribution

lijk = aj //cos(nix)cos(njy)dA (8)
Tk

to each Fourier coefficient;;, for each triangular subregiofi.
Expanding the integrand about the centroid,{(), of Ty yields

lijk = oij Area(Ty) cos(miX) cosj ) + O([i% + j?]h?) (9)

where Areafy) is the area of triangl@y. This approximation is preferred over the direc
evaluation of the integrals (8) because it is much faster (it only requires two trigonome
evaluations) and it produces errors which are typically small relative to those arisin
Step 2.

Three-dimensional problemsThe decomposition described above naturally extends
three dimensions [22]. First, each cube is divided into six tetrahedrons. The desired ph:
then approximated with a number of small tetrahedrons. Finally, for each small tetrahec
T,, a contribution

2P Volume(T,) cog(ri X) cog(m j §) cogmkZ)

is added to each Fourier coefficienfx, where(X, ¥, 7) is the centroid off, and p is the
number of nonzero elements ©f j, k}.

3.3.2. Approximation of Junctions

A number of methods for accommodating junctions are available [22]. A particula
simple and accurate approach is to recursively subdivide any region containing more
two phases. After only a few iterations, the smallest subregions that arise can be triv
treated by assigning an equal contribution to each set of Fourier coefficients.

3.4. Refinement Techniques

In Section 3.2, arecursive algorithm for subdividing the domain was introduced. We r
carry out a more detailed study of the method and introduce a gradual refinement w
overcomes certain limitations of the original algorithm.
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For illustrative purposes, all examples set the width of the coarsest grid Itb:b(%.
Similar results arise for the usual choicetdf=1/n.

3.4.1. The Original Refinement Algorithm

The original refinement algorithm of Section 3.2 is effective for a variety of problem
For certain smooth regions, however, small slivers of a region can be missed. Consi
for example, the shape found in Fig. 8. Applying the subdivision algorithm gives the me
displayed in Fig. 9a. A close examination of the leftmost part of the shape indicates th
small, thin region is missed by the algorithm.

The original refinement algorithm also produces errors when applied to nonsmo
shapes. Consider, for example, the region displayed in Fig. 10. Such a shape may
when a topological breaking occurs. Applying the original subdivision algorithm to tt
shape gives the mesh displayed in Fig. 11a. Clearly)éH?) error in the phase area is
produced at the cell containing the sharp corners. This correspondéX@\an error when
H =1/nandn is chosen according to (5).

Although the errors produced by these flaws in the refinement technique often are
than those arising from the MBO-method, we prefer a more accurate refinement to ach
a greater confidence in our results. Furthermore, a more accurate refinement is req
whenever higher order, extrapolated methods are used (see [21, 22]).

3.4.2. A Method for a Gradual Refinement

We now seek a refinement which captures the entire interface at the level of the fir
grid subdivision, even for nonsmooth shapes.

To achieve this objective, a gradual refinement was implemented. This method proce
according to the original subdivision algorithm of Section 3.2, with the following addition:

0.8

0.7r

0.5+

0.4r

0.2

01r

o Il I3 1 1 1 1
0 0.2 04 0.6 0.8 1

FIG. 8. A smooth region.
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FIG. 9. Refinement methods for smooth regions: (a) original refinement; (b) gradual refinement.

considerationWhenever any cell is refined, check the subdivision level of the neighbot
cells. Subdivide neighbors which are two or more levels of refinement coarser

This method accurately represents the narrow, sliver-shaped regions that were m
using the original refinement. By using a fine subdivision in a small neighborhood of
interface, this method even captures the rapid variations in the front that arise from cor
See Figs. 9b and 11b for examples.

Certainly, this gradual refinement produces more cells than the original approach.
order of the number of cells is unchanged, however. To see this, note that cells of widi

he = 27°H, where 0< ¢ < log,(H/h)

form a band at most two cells wide on each side of the interface. The length of each |
can be bounded by a constakt, independent oh (e.g., bands for a convex region are

09r

0.6

0.5
0.4

0.3

0 0.2 0.4 0.6 0.8 1

FIG. 10. A problem with sharp corners.
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FIG. 11. Refinement methods for corners: (a) original refinement; (b) gradual refinement.

shorter than the perimeter of the domain). Lettidbe the number of cells of width, we
observe that

Total number of cells= np +Nan + -+ - + Ny + Ny,

4K 4K AR
<— —_— e [
h ' 2h H/2
8K
—_— n
< h +

Thus,O(1/h + n?) cells are required, which matches in order the result for the origin:
refinement. Implementation of this gradual refinement is somewhat more involved than
original approach because cell neighbors must be found. Many data structures appror
for this task have been considered [26, 25]. Our implementations define the grid as a
of vertices (cf. [8]) and access the cells and their neighbors indirectly by traversing tt
vertices [22].

3.5. Fast, Transform-Based Algorithms

The refinements of the previous sections lead to a large number of function evaluatit

n—-1

U, y) = Y cjexp(—m’[i®+ j?]At) cogmix) cosm|y). (10)
ij=0

These evaluations occur at each vertex when subdividing the domain (see Section
Because these evaluations occur on an unequally spaced grid, a fast Fourier transform c
be used. Letting the number of function evaluationd\ye we see that direct evaluation
of Eqg. (10) is often prohibitively expensive beca8&?Np) operations are required for
each step of the algorithm. Similarly, evaluation of the Fourier coefficients using Egs.
and (9) leads to a Fourier sum of the form

Ng—1

Gj = Y _ dy cosmix,) cos(mjye), (11)

=0
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where 0<i, j <n — 1, and &, y,) are unequally spaced. Herdy equals the number of
verticesinsidethe region plus the number of triangles used to represent the region. C
again, a fast Fourier transform cannot be used and direct evaluation Ieéltssﬁblq)
operations. (Note thal, and Ny are typically of the same magnitude.)

Several methods for the fast evaluation of Egs. (10) and (11) have been devel
[3, 6, 28]. In [3], for example, an efficient and practical method based on multiresolut
analysis was developed that evaluates Eq. (10),apoints in

1
O (Np Iogz<) + n? Iog(n)) (12)
€
operations and that evaluatesr&IFourier coefficients of (11) in

o (Nq log? <§) + n? Iog(n)) (13)

operations, where is the precision of the computation.

Using the fact thatd(1/h) refined cells arise in two dimensions (see Section 3.4.:
it is clear thatN, = O(1/h) and Ny =0O(1/h). The remaining®(n?) coarse grid cells
may be treated with a fast Fourier transform(n? log(n)) operations. Applying these
relationships, along with <« 1/n, we see that a total of

O((1/h) log?(h) 4+ n?log(n))

operations arise at each iteration of the spectral discretization of the MBO-method. As
shown in [22], the MBO-method produces @At?) error in the position of a smooth

curve at each step of the method when two phase regions occur. To avoid degradin
accuracy (see Section 3.3.1), we select O(At) to arrive at

1 2
O (E log (At)> (14)

operations per step. For the case of junctions, we may apply the same consideratic
determine that

1
O (E Iog(At)) (15)

operations are required per step to avoid degrading the overall accuracy of the method

4. COMPARISON TO THE USUAL FINITE DIFFERENCE DISCRETIZATION
OF THE MBO-METHOD

There are several reasons why the spectral method described in this article is preferre
the usual finite difference discretization of the MBO-method. These reasons are outl
below.

1. As has been discussed in Section 3.1, only low frequency modes need to be apy
mated, provided\t is not taken very small. A large amount of computational work is save
by only treating these low frequency modes.
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2. The proposed spectral method does not require any time-stepping bétweand
tstart+ At. This eliminates a possible source of error and produces large savings in com
tational work.

3. Local refinement is much simpler to implement for our approach because it is dc
in the context of a quadrature, rather than a discretization of a differential equation.

4. By using a spectral method, the error arising from discretizing the heat equation
be nearly eliminated. This is an attractive feature, because it makes extrapolafidn in
practical (see [22, 21]), which in turn allows for larger time steps. When larger time ste
are taken, even fewer basis functions are required to solve the heat equation to a ¢
accuracy. Note that if extrapolation is used to eliminate the leading order error term,
operation counts (14) and (15) will no longer apply. To avoid degrading the accuracy
these (potentially) higher order methods requitgAt)—3/2log?(At)) operations in the
two-phase case ar@d((At)~*log?(At)) operations in the multiphase case.

5. The original finite difference algorithm must satisfy (2) globally, or part of the fron
may erroneously remain stationary. By recursively refining near the interface and inter
lating at the finest cell level, our approach eliminates this restriction.

6. The proposed spectral method also givesgh®/ At + h?) approximation of the
location of the front, which is greatly superior to the first-order approximation arising f
finite differences. As we saw in the previous section, this improved accuracy, in part exple
why

1 2
O(E log (At))

operations are needed per step for the basic method. This compares very favorab
the idealized finite difference result for smooth curv®s1/At®), which was derived in
Section 2.4.

These are indeed formidable advantages for our proposed method over the usual 1
difference discretization of the MBO-method. To illustrate the performance improveme
consider the motion by curvature of the kidney-shaped region displayed in Fig. 12. Us
the new, spectral method and an optimized finite difference apprfosettompare the area
lost over a time = 0.0125 with the exact answer,0125x 27 (see [17]). From Table |,
we see that our proposed method can easily find solutions to within a 1% error. The fi
difference approach, however, becomes impractical when accurate solutions are sough
Table ).

Numerical tests for the problems described in the next section also found that our propc
discretization often requires less than 0.1% of the computational time of the usual fir
difference discretization of the MBO-method. For this reason, the numerical studies in
following section are carried out using the new spectral method.

5. NUMERICAL EXPERIMENTS

In this section we report on various experiments using our algorithm. For further qua
tative studies for both mean curvature flow and other, more general motions, see [22—

2The difference algorithm uses an adaptive time-stepping method on a uniform mesh. A multigrid techni
was used to solve the implicit equations which arose from a backward Euler time-stepping scheme; see [22]
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FIG. 12. A smooth interface at time,

5.1. A Smooth Three-Phase Problem

To begin, consider the motion by curvature of the three-phase problem given in Fig.
Using our new spectral method, the change in the area of the central region was com,
to the exact resuh% x (7/3)(2— 6) x 0.04, which was obtained using the Von Neumann
Mullins parabolic law [17]. Because &M(+/At) error seems plausible from the asymptotic
results givenin[22, 23], an extrapolation in the a@#(~/2— 1)) (v2A2 — A2t was also
computed to eliminate the conjectured leading order error term. The results for a nur
of experiments are given in Table IIl.

x x

FIG. 13. A smooth three-phase problem: (a3 0.0; (b)t =0.04.



620

STEVEN J. RUUTH

TABLE |
New Spectral Method

At h Error Timé
0.003125 2° 4% 0.4s
0.00078125 i 1% 8s

Note 2All timings were carried out on an

HP735/100 workstation.
TABLE Il
Finite Difference Discretization
AX Error Time
= 4% 85s
= 3% 10341s
TABLE Il

Convergence Study for a Smooth Three-Phase Problem

Error Conv. Errorin Conw.

At h N, Ny in AAt Rate Extrapolation Rate
0.0025 21 8.0et-03 1.3e+04 2.60e-03 0.67 —1.08e-03 1.33
0.00125 212 1.6e+04 2.6e+-04 1.70e-03 0.61 —4.63e-04 1.22
0.000625 212 1.6e+04 2.6e+-04 1.14e-03 0.57 —2.12e-04 1.13
0.0003125 21 3.2et04 5.3e+04 7.79e-04 0.55 —1.00e-04 1.08

Note HereN_p andWq represent the average values\yf and N, (see Section 3.5) that arise using a
finest cell width ofh (see Section 3.3). The value ofis 64 (see Section 3.1). All reported errors are
independent of further cell refinement or larger values.of

TABLE IV
Convergence Study for the Disappearance Time

of a Phase Region

At h Np Ny Errorin T4t Conv. Rate
0.0025 2° 1.7e+03 1.9e+03 4.61e-02 0.46
0.00125 29 1.7e+03 1.9e+-03 3.34e-02 0.46
0.000625 210 3.1e+03 4.0e+-03 2.42e-02 0.46
0.0003125 210 3.le+03 3.8e-03 1.75e-02 0.46

Note Hereh = 64. Allreported errors are independent of further cell refinement

or larger values ofh.
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t = 0.000 t = 0.150

t =0.300 t=0.325

FIG. 14. The evolution of a junction through a singularity: (g3=0.000; (b) t =0.150; (c) t =0.300;
(d)t=0.325.

These results support the conjecture that the MBO-methd igAt) for the case of
junctions and suggest that extrapolation can be used in conjunction with our prop
method to produce higher order estimates of certain quantities of interest such as
areas.

Note. The error arising from our spectral discretization represents less than 1% of
total error in the extrapolated results. This choice of error tolerance was made to stud
convergence rate of the MBO-method and its extrapolation. Often, however, itis satisfac
to generate spatial errors which are comparable in size to the time-stepping errors gent
by the MBO-method. For this choice of error tolerance, we found that fewer refineme
were needed and the value\gf andN, were about one-tenth of those reported in Table Il

5.2. The Evolution of a Junction through a Singularity

The evolution of more complicated problems may also be simulated using our r
spectral discretization. Consider, for example, the motion by curvature of the three-p
problem given in Fig. 14. Using our spectral discretization of the MBO-method, estime
of the disappearance tim&2!, of the smallest phase were compared to the exact ahsw
for severalAt. The results for a number of experiments are reported in Table IV.

These results are suggestive of an approximaf¥ly/At) error for the basic method.

5.3. A Three-Dimensional Example

Interesting examples in three dimensions are also naturally handled by the method
example, Fig. 15 displays the motion of a thin-stemmed barbell using a constant step
At =0.0004. From these images, it is clear that the center handle pinches off to f

3 This result,T =0.33051, was obtained using Brian Wetton’s front tracking code; see [5].
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1 =0.0008

t =0.0020 t =0.0032

t = 0.0064 t =0.0128

FIG. 15. A thin-stemmed barbell moving by mean curvature motion.

two pieces. As expected from [12], these convex shapes become nearly spherical as
disappear. This simulation used a constant step Aize, 0.0004 and required about 20 min
of CPU time.

Note that a wider stem can produce a qualitatively different motion. For example, [
gives the motion of a thick-stemmed barbell which exhibits no topological shape chan
and eventually becomes ellipsoidal and more spherical as it disappears.

5.4. A Multiple Phase Example in Three Dimensions

The evolution of multiple phase junctions may also be studied using our hew spec
discretization of the MBO-method. For example, Fig. 16 displays the motion by me
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t =0.0000 t = 0.0036

= 0.0072 t =0.0108

t = 0.0144 t =0.0180

FIG. 16. A four-phase example moving by mean curvature motion.

curvature of a spherical four-phase shape. From these images, we see that the four-
junction is stable under mean curvature motion, as is expected from experimental sti
of recrystallized metal [11]. This simulation used a constant step airze; 0.0004 and
required about 45 min of CPU time.
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