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The problem of simulating the motion of evolving surfaces with junctions ac-
cording to some curvature-dependent speed arises in a number of applications. By
alternately diffusing and sharpening characteristic functions for each region, a variety
of motions have been obtained which allow for topological mergings and breakings
and produce no overlapping regions or vacuums. However, the usual finite difference
discretization of these methods is often excessively slow when accurate solutions
are sought, even in two dimensions. We propose a new, spectral discretization of
these diffusion-generated methods which obtains greatly improved efficiency over
the usual finite difference approach. These efficiency gains are obtained, in part
through the use of a quadrature-based refinement technique, by integrating Fourier
modes exactly and by neglecting the contributions of rapidly decaying solution tran-
sients. Indeed, numerical studies demonstrate that the new algorithm is often more
than 1000 times faster than the usual finite difference discretization. Our findings are
demonstrated on several examples.c© 1998 Academic Press

Key Words:diffusion; interface; motion by mean curvature; multiple junctions;
spectral method.

1. INTRODUCTION

In a variety of applications, one wants to follow the motion of a front that moves with some
curvature-dependent speed. Such motions can be particularly challenging to approximate
when more than two phase regions are present because junctions of moving surfaces can
occur. To simulate the evolution of such models, a number of numerical methods have been
developed.

Front tracking methods (see, e.g., [10, 5] and references therein), are often well-suited
for curves that never cross because they explicitly approximate the motion of the interface
rather than a level set of some higher dimensional function. When line or planar segments
interact, however, decisions must be made as to whether to insert or delete segments.
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Because complicated topological changes are often possible, front tracking methods can be
impractical to implement, especially in more than two dimensions.

Other approaches also have limitations. Monte Carlo methods for Potts models can
introduce unwanted anisotropy into the motion, due to the spatial mesh [29], and are typically
too slow to find accurate approximations of the model. Phase field methods are often
inherently too expensive for practical computation [16] because they represent the interface
as an internal layer and, thus, require an extremely fine mesh (at least locally) to resolve
this layer.

To address these concerns for the case of pure mean curvature flow (i.e., each interface
moves with a normal velocity equal to its mean curvature,κ), a method was proposed by
Merriman, Bence, and Osher (MBO) which alternately diffuses and sharpens characteris-
tic functions for regions [15, 16]. This method naturally handles complicated topological
changes with junctions in several dimensions and has been rigorously proven to converge
when two phase regions are present [7, 2]. Furthermore, in the two-phase case, generaliza-
tions based on this method and on the “threshold growth dynamics” of Gravner and Griffeath
[9] produce a variety of motions which depend on the principal curvatures of the surface and
the local normal direction [13, 14, 24]. Theseconvolution-based methodsare particularly
interesting because they may be viewed as the continuum limit of certain cellular automata
evolution rules [9, 14, 24]. In the multiphase case, a generalization appropriate for the app-
roximation of grain growth models [1, 4, 20] has been developed and studied [23]. This
diffusion-generated approach allows each interface,0i j , to move with a normal velocity,

vi j = γi j κi j + ei − ej , (1)

whereep represents the constant bulk energy for thepth phase region (see Fig. 1). Unfortu-
nately, the usual finite difference discretization of the MBO-method and its generalizations
is often exceedingly slow when accurate results are sought, even in two dimensions.

Other methods for approximating the motion of interfaces have also been developed.
The level set method of Osher and Sethian [18], for example, computes arbitrary curvature-
dependent surface motion, including topological changes. Standard numerical PDE methods
apply to accurately and efficiently discretize the equations for motion [19]. Although well
suited for a wide variety of two phase problems, the original level set method does not apply
to the motion of junctions. An extension to this case was ultimately developed in [16]. This
extension treats the triple point in a similar manner to the MBO-method described above

FIG. 1. The interfaces,0i j , move with a normal velocityvi j = γi j κi j + ei − ej and are subject to angles
θ1, θ2, θ3.
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(which suggests a similar order of accuracy) but which has several additional difficulties.
In particular, “vacuums” (parts of the domain that do not contain any phase region) form
near junctions and a “redistancing” is required at each step of the algorithm [16]. This early
method also “lacks (so far) a clear theoretical basis” [30] and remains largely unexplored,
numerically.

More recently, a variational approach [30] based on the motion of level sets has been
proposed to approximate the multiphase model (1). This interesting approach is especially
well suited for treating problems with additional constraints. Unfortunately, it is unable to
approximate many problems involving more than three phase regions. This is easily seen
since onlyr independentγi j may be prescribed, wherer is the number of phase regions.
Furthermore, this method limits angles to the classical condition (see, e.g., [27])

sin(θ1)

γ23
= sin(θ2)

γ13
= sin(θ3)

γ12

at triple points.
In this paper, we propose a new, spectral discretization for the diffusion-generated meth-

ods which obtains greatly improved efficiency over the usual finite difference discretization.
Although these algorithms are given (for simplicity) for the MBO-method, we note that they
may also be applied to its generalizations described in [24, 14, 23]. Our algorithms, when
applied to the MBO-method give a simple, fast way of approximating motion by mean
curvature and, when applied to convolution-based methods, provide efficient computa-
tional schemes for the limiting motion of certain cellular automata rules or more general
anisotropic curvature-dependent motions [24]. Furthermore, our algorithms when applied
to the generalizations of [23] give a practical tool, not available hitherto, for accurately
treating a wide variety of motions described by the multiphase model (1). An outline of the
paper follows.

In Section 2, we give the MBO-method for two-phase and multiphase problems. For the
case of the finite difference discretizations originally proposed [15], the selection of the
step size is discussed and several limitations of the method are identified.

In Section 3, a new spectral method for the realization of the MBO-method is proposed
and described in detail. A spatial discretization is given and an efficient quadrature for
calculating the corresponding Fourier coefficients is provided. This quadrature obtains ac-
curate approximations to the front using a piecewise linear approximation to the surface
and a gradual refinement technique. Unequally spaced transform methods for the rapid
evaluation of the Fourier coefficients are also applied.

Section 4 gives a comparison of the proposed method and the usual finite difference
approach. In particular, numerical experiments are presented to illustrate the efficiency
gains which arise from our method.

In Section 5, we use our algorithms to examine the numerical convergence properties of
the MBO-method and apply our algorithms to the motion by mean curvature of surfaces.
This section also demonstrates that extrapolation can be used in conjunction with our method
to produce improved estimates of certain quantities of interest (e.g., phase areas).

2. THE MBO-METHOD

An algorithm for following interfaces propagating with a normal velocity equal to mean
curvature was introduced by Merriman, Bence, and Osher [15, 16]. In this section, we
describe the method for the two-phase and multiple-phase problems.
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2.1. The Two-Phase Problem

Suppose we wish to follow an interface moving with a normal velocity equal to its mean
curvature. The motion of such a surface may be approximated using the MBO-method for
two regions:

MBO-METHOD (Two regions).

BEGIN
(1) SetU equal to the characteristic function for the initial region.

i.e., setU (x, 0) =
{

1, if x belongs to the initial region
0, otherwise

REPEAT for all steps,j , from 1 to the final step:
BEGIN

(2) Apply diffusion1 to U for some time,1t .

i.e., find U (x, j 1t) using

{
Ut = ∇2U,

∂U/∂n = 0 on∂D
starting fromU (x, ( j − 1)1t).

(3) “Sharpen” the diffused region by setting

U (x, j 1t) =
{

1, if U (x, j 1t) > 1
2

0, otherwise.
END

END

For any timet , the level set{x : U (x, t) = 1
2} gives the location of the interface. Note that

it is essential to apply the diffusion for only a short time,1t , since only the initial motion
generated by the diffusion is equal to motion by mean curvature (see [7, 2] for a precise
statement).

2.2. Multiple Regions

To obtain a normal velocity equal to the mean curvature for symmetric junctions (e.g.,
a 120–120–120 degree junction in two dimensions), we may apply the MBO-method for
multiple regions:

MBO-METHOD (Multiple (r ) regions).

BEGIN
(1) For i = 1, . . . , r

SetUi (x, 0) equal to the characteristic function for thei th region.

REPEAT for all steps,j , from 1 to the final step:
BEGIN

(2) For i = 1, . . . , r , starting fromUi (x, ( j − 1)1t),
Apply diffusion toUi for some time slice,1t .

1 Here we have selected zero flux boundary conditions to ensure that the curve meets the boundary at right
angles, as is appropriate for certain grain growth models [5]. Alternatively, one may minimize the effects of the
boundary by selecting nonreflecting boundary conditions,∂2U/∂n2 = 0 (cf. [30]), or use Dirichlet conditions to
produce a constrained motion.
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i.e., find Ui (x, j 1t) using

{
∂Ui
∂t = ∇2Ui ,

∂Ui
∂n = 0 on∂D.

(3) “Sharpen” the diffused regions by setting the largestUi equal to 1 and the
others equal to 0 for each point on the domain.

END
END

For any timet , the interfaces are given naturally as the boundaries of the characteristic sets.

2.3. Time Step Selection

To accurately resolve the motion of features of the interface, it is also important to select
1t appropriately. Once a sufficiently small1t is selected, a spatial discretization must
be chosen that can resolve the motion of the interface. For the case of a finite difference
discretization, the level setU = 1

2 must move at least one grid point; otherwise the interface
remains stationary [16]. This produces the restriction that

grid spacing¿ (speed of motion of the interface) × 1t.

Lettingκ be the curvature and1x the grid spacing, we arrive at a restriction on1x for the
finite difference approach [16],

1x ¿ κ1t. (2)

As we shall see, the restriction (2) does not appear for the method that we propose in
Section 3.

2.4. Limitations of Finite Difference Discretizations

Satisfying the restriction (2) derived in the previous section can be computationally im-
practical even for smooth, two-phase problems in two dimensions. Consider, for example,
evolving the boundary of a spiral-shaped region according to a normal velocity equal to its
curvature. Since the local curvature of the boundary of such a problem can vary tremen-
dously, it may be impractical to satisfy (2) everywhere using a uniform mesh.

To achieve a more efficient finite difference algorithm, one might consider discretizing
the MBO-method by placing a narrow band of grid points around the front. However, even
this optimized finite difference approach can lead to a prohibitive number of operations at
each step of the method.

For example, consider the motion by curvature of a smooth curve. For such a curve, the
MBO-method is locally first order in1t since each step of the method produces anO(1t2)

error in the position of the front [22]. To preserve the overall accuracy of the method, grid
points must be at most a distanceO(1t2) apart since each step produces an error which is
comparable to the mesh spacing. Noting that the front travels a distanceO(1t) per step of
the method, it is clear that a minimum ofO(1/1t3) grid points are needed to safely band a
curve (see, e.g., Fig. 2). Thus, a minimum ofO(1/1t3) operations per step are required to
preserve the overall accuracy of the method, which is often prohibitively expensive when
accurate results are sought.

A further limitation of the finite difference approach is that the error is not regular.
Specifically, very small differences in the position of the level set 1/2 before sharpening
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FIG. 2. A banded finite difference mesh.

can produce jumps in the front location after sharpening. This type of error is undesirable
because it makes the construction of higher order accurate, extrapolated results impractical.
Figures 3 and 4 illustrate how a small change in the position of the level set 1/2 can lead to
a jump in the front location after sharpening when using finite differences. Our proposed
method can essentially eliminate spatial errors by using a local refinement with a piecewise
linear approximation of the front. In smooth, two-phase problems, the remaining error in
the front position is of the form

c(1t)2 +O(1t)3,

wherec depends of the local geometry of the problem [22]. Thus, in two phase problems
we expect that extrapolation in1t can be used in conjunction with our proposed method
to produce higher order accurate results. In the multiphase case the form of the error is not
known, but numerical studies indicate that improved results are still obtained. See Section 5
and [21, 22].

To avoid the limitations of the original finite difference approach, a new, spectral method
for realizing the MBO-method is introduced in the next section.

3. A NEW SPECTRAL METHOD

As we shall see later in this section, accurate computation of solutions using the usual
finite difference discretization of the MBO-method can be expensive, even for simple

FIG. 3. Sharpening a shape.
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FIG. 4. Sharpening a perturbed shape.

two-dimensional problems. Since we are mainly interested in three-dimensional problems
or problems involving more than two phases, a faster method is desired. This section de-
scribes a new spectral method for realizing the MBO-method which is typically much faster
than the usual finite difference approach.

For notational simplicity, the algorithm focuses on the two-phase case over the domain,
D= [0, 1] × [0, 1]. Certain extensions to three spatial dimensions and more phases are also
discussed.

3.1. Discretization of the Heat Equation

Carrying out diffusion-generated motion by mean curvature requires us to solve the heat
equation

ut = 1u,

∂u

∂n
= 0 on∂D

(3)

repeatedly over time intervals of (possibly variable) length1t , starting from the charac-
teristic function of the region to be followed. Over any of these time intervals,u may be
approximated by the Fourier cosine tensor product,

U (x, y, t) =
n−1∑

i, j =0

ci j exp(−π2[i 2 + j 2][ t − tstart]) cos(π i x) cos(π j y) (4)

for tstart ≤ t ≤ tstart+ 1t , wheretstart is the time when the current interval starts.
One might expect that a Fourier spectral approximation foru would be unwise because

u is initially discontinuous at interfaces. We are only interested in the solution after a time
1t , however. After a sufficiently large time1t , high frequency modes have dissipated.
Since the problem is linear, different modes do not interact and thus there is never a need to
approximate high frequency modes (not even neartstart, when high frequency modes make
an important contribution to the solution). For this reason, an accurate approximation to (3)
at time1t can be obtained using far fewer basis functions than might otherwise might be
expected. Indeed, to approximate the position of the front to within a distanceO(ε), our
implementations simply select ann satisfying

n ≥
√

|ln(ε)|/π21t (5)

and verify the corresponding results by repeating the calculation with a differentn (see also
[22]).
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3.2. Calculation of the Fourier Coefficients

The values of the Fourier coefficients,ci j , of Eq. (4) must still be determined at the
beginning of each time step (i.e., immediately following the sharpening of the previous
step). In fact, we calculate these coefficients as part of the sharpening step using an adaptive
quadrature method rather than a pseudospectral method. Begin by defining

Rt =
{

(x, y) : U (x, y, t) >
1

2

}
to be the approximation of the phase we are following. By multiplying Eq. (4) at time
t = tstart by cos(π i x) cos(π j y), integrating over the domain, and simplifying via the usual
orthogonality conditions, we find

ci j = αi j

∫ 1

0

∫ 1

0
U (x, y, tstart) cos(π i x) cos(π j y) dx dy,

where

αi j =


1, if i = j = 0
4, if i 6= 0; j 6= 0
2, otherwise.

(6)

Immediately after sharpening,

U (x, y, t) =
{

1, if(x, y) ∈ Rt

0, otherwise,

which implies that

ci j = αi j

∫
Rt

∫
cos(π i x) cos(π j y) d A. (7)

Thus, simple functions must be integrated over a complicated, nonrectangular region,
Rt . This may be accomplished by recursively subdividing the domain (cf. [26, 25]), as we
illustrate for the region,R, given in Fig. 5a.

We begin by evaluatingU at the corners of a number of equally sized subregions, so
as to capture the large-scale features of the shape. Typically,n × n subregions are selected

FIG. 5. Subdividing the domain into its coarsest subregions: (a) initial region,R; (b) coarsest subdivisions.
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because the correspondingU -values can be evaluated in justO(n2 log(n)) operations using a
fast Fourier transform. If the phase at all four corners of any subregion corresponds to white,
then we assume that the subregion does not intersect withR and, hence, no contribution to
the Fourier coefficients is made. This case corresponds to the subregions of Fig. 5b which
have at least one dashed edge. If all four corners of a subregion,Q̃, correspond to grey,
however, we assume thatQ̃ ⊂ R and add a contribution;

αi j

∫
Q̃

∫
cos(π i x) cos(π j y) d A,

to each of the Fourier coefficients,ci j , for 0≤ i, j ≤ n − 1. This case corresponds to the
subregions of Fig. 5b which have at least one thin, solid edge. Finally, if two phases occur,
further subdivisions are carried out. We demonstrate this subdivision procedure for the
subregion,Q, of Fig. 5b.

BecauseQ is a mixed region, we divide it into quadrants, as shown in Fig. 6b. Since the
phase color at all corner points of quadrantQ1

1 is white, we assume that this quadrant does
not intersect withR and, hence, does not contribute to the Fourier coefficients. For each
of the remaining quadrants,Q2

1, Q3
1, andQ4

1, two phases occur, so further subdivision is
required. See Fig. 6c.

Focusing on the refinement of the subregion,Q3
1, we find that the phase of the upper right-

hand corner ofQ1
2 is different than that of the other corners. Thus,Q1

2 is also subdivided.
Corner points of the remaining subregions are grey, so we assumeQk

2 ⊂ R for k = 2, 3, 4

FIG. 6. Dividing a subregion: (a) initial subregion; (b) one subdivision; (c) two subdivisions; (d) four sub-
divisions.
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and add contributions,

αi j

∫
Qk

2

∫
cos(π i x) cos(π j y) d A,

to each of the Fourier coefficients,ci j , for 0≤ i, j ≤ n − 1. Recursive subdivisions of the
domain continue (see, e.g., Fig. 6d) until regions containing multiple phases can be safely
approximated by some simple numerical technique.

3.3. Approximation of the Finest Subregions

In the previous section, a method was introduced for recursively dividing the domain
into rectangles. At some point, however, we must stop subdividing and treat the finest cells
of width h. This section discusses how to approximate the contributions to the Fourier
coefficients at the finest grid subdivisions.

3.3.1. Piecewise Linear Approximation for Two-Phase Problems

To produce anO(h3/1t +h2
)

approximation of the interface, a simplicial decomposition
of the region,R, with a piecewise linear approximation to the boundary can be used. We
now describe such a method for two-phase problems in two and three dimensions.

Two-dimensional problems.There are three main steps for approximating the integrals
(7) over the finest grid subdivisions for two-phase problems in two dimensions. These are
detailed below.

Step1. Divide the square cell into two triangles. To simplify the implementation of
Step 2, we begin by breaking the square subdomain into two triangles and consider each
separately.

Step2. Approximate regions using triangles. We next approximate the desired phase
with a number of triangular subregions. Details for this approximation method are now
given for each of the four possible cases.

Case0. If none of the corners of the triangle belong toR, then we assume thatR
and the triangular subdomain do not overlap. No contribution to the Fourier coefficients is
made.

Case1. If one corner is inR, then linear interpolation is used to determine a triangular
approximation to the subregion.

Case2. If two corners are inR, then we represent the shape as the difference of shapes
which are treated using Cases 1 and 3.

Case3. If three corners are inR, then we assume that the entire subdomain belongs
to R, and we approximate the integrals (7) over the entire subdomain.

We seek an estimate of the error produced by this step for a smooth curve. One source
of error occurs when smooth curves are approximated by line segments. By Fig. 7, this
approximation produces anO(h2) error in the position of the front, since the curvature is
independent ofh.

We also produce errors by replacing the actual front position with an interpolation. In
this case we expect anO(h3/1t) error, based on the one-dimensional studies given in [22].

Taking into account both of the contributions to the error, we find that this triangular
approximation of regions produces anO(h3/1t + h2) error in the position of the front.
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FIG. 7. Errors approximating curved segments.

Step3. Integrate over each triangular subregion. We are now left with the task of adding
a contribution

Ii jk = αi j

∫
Tk

∫
cos(π i x) cos(π j y) d A (8)

to each Fourier coefficient,ci j , for each triangular subregion,Tk.
Expanding the integrand about the centroid, (x̃, ỹ), of Tk yields

Ii jk = αi j Area(Tk) cos(π i x̃) cos(π j ỹ) +O([i 2 + j 2]h4) (9)

where Area(Tk) is the area of triangleTk. This approximation is preferred over the direct
evaluation of the integrals (8) because it is much faster (it only requires two trigonometric
evaluations) and it produces errors which are typically small relative to those arising in
Step 2.

Three-dimensional problems.The decomposition described above naturally extends to
three dimensions [22]. First, each cube is divided into six tetrahedrons. The desired phase is
then approximated with a number of small tetrahedrons. Finally, for each small tetrahedron,
T̀ , a contribution

2p Volume(T̀ ) cos(π i x̃) cos(π j ỹ) cos(πkz̃)

is added to each Fourier coefficient,ci jk , where(x̃, ỹ, z̃) is the centroid ofT̀ and p is the
number of nonzero elements of{i, j, k}.

3.3.2. Approximation of Junctions

A number of methods for accommodating junctions are available [22]. A particularly
simple and accurate approach is to recursively subdivide any region containing more than
two phases. After only a few iterations, the smallest subregions that arise can be trivially
treated by assigning an equal contribution to each set of Fourier coefficients.

3.4. Refinement Techniques

In Section 3.2, a recursive algorithm for subdividing the domain was introduced. We now
carry out a more detailed study of the method and introduce a gradual refinement which
overcomes certain limitations of the original algorithm.
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For illustrative purposes, all examples set the width of the coarsest grid to beH = 1
8.

Similar results arise for the usual choice ofH = 1/n.

3.4.1. The Original Refinement Algorithm

The original refinement algorithm of Section 3.2 is effective for a variety of problems.
For certain smooth regions, however, small slivers of a region can be missed. Consider,
for example, the shape found in Fig. 8. Applying the subdivision algorithm gives the mesh
displayed in Fig. 9a. A close examination of the leftmost part of the shape indicates that a
small, thin region is missed by the algorithm.

The original refinement algorithm also produces errors when applied to nonsmooth
shapes. Consider, for example, the region displayed in Fig. 10. Such a shape may arise
when a topological breaking occurs. Applying the original subdivision algorithm to the
shape gives the mesh displayed in Fig. 11a. Clearly, anO(H2) error in the phase area is
produced at the cell containing the sharp corners. This corresponds to anO(1t) error when
H = 1/n andn is chosen according to (5).

Although the errors produced by these flaws in the refinement technique often are less
than those arising from the MBO-method, we prefer a more accurate refinement to achieve
a greater confidence in our results. Furthermore, a more accurate refinement is required
whenever higher order, extrapolated methods are used (see [21, 22]).

3.4.2. A Method for a Gradual Refinement

We now seek a refinement which captures the entire interface at the level of the finest
grid subdivision, even for nonsmooth shapes.

To achieve this objective, a gradual refinement was implemented. This method proceeds
according to the original subdivision algorithm of Section 3.2, with the following additional

FIG. 8. A smooth region.
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FIG. 9. Refinement methods for smooth regions: (a) original refinement; (b) gradual refinement.

consideration:Whenever any cell is refined, check the subdivision level of the neighboring
cells. Subdivide neighbors which are two or more levels of refinement coarser.

This method accurately represents the narrow, sliver-shaped regions that were missed
using the original refinement. By using a fine subdivision in a small neighborhood of the
interface, this method even captures the rapid variations in the front that arise from corners.
See Figs. 9b and 11b for examples.

Certainly, this gradual refinement produces more cells than the original approach. The
order of the number of cells is unchanged, however. To see this, note that cells of width

h` = 2−`H, where 0< ` ≤ log2(H/h)

form a band at most two cells wide on each side of the interface. The length of each band
can be bounded by a constant,K , independent ofh (e.g., bands for a convex region are

FIG. 10. A problem with sharp corners.
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FIG. 11. Refinement methods for corners: (a) original refinement; (b) gradual refinement.

shorter than the perimeter of the domain). Lettingnh̃ be the number of cells of width̃h, we
observe that

Total number of cells= nh + n2h + · · · + n H
2

+ nH ,

<
4K

h
+ 4K

2h
+ · · · + 4K

H/2
+ n2,

<
8K

h
+ n2.

Thus,O(1/h + n2) cells are required, which matches in order the result for the original
refinement. Implementation of this gradual refinement is somewhat more involved than the
original approach because cell neighbors must be found. Many data structures appropriate
for this task have been considered [26, 25]. Our implementations define the grid as a list
of vertices (cf. [8]) and access the cells and their neighbors indirectly by traversing their
vertices [22].

3.5. Fast, Transform-Based Algorithms

The refinements of the previous sections lead to a large number of function evaluations,

U (x, y) =
n−1∑

i, j =0

ci j exp(−π2[i 2 + j 2]1t) cos(π i x) cos(π j y). (10)

These evaluations occur at each vertex when subdividing the domain (see Section 3.2).
Because these evaluations occur on an unequally spaced grid, a fast Fourier transform cannot
be used. Letting the number of function evaluations beNp, we see that direct evaluation
of Eq. (10) is often prohibitively expensive becauseO(n2Np) operations are required for
each step of the algorithm. Similarly, evaluation of the Fourier coefficients using Eqs. (7)
and (9) leads to a Fourier sum of the form

ci j =
Nq−1∑
`=0

d` cos(π i x`) cos(π j y`), (11)
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where 0≤ i, j ≤ n − 1, and (x`, y`) are unequally spaced. Here,Nq equals the number of
verticesinsidethe region plus the number of triangles used to represent the region. Once
again, a fast Fourier transform cannot be used and direct evaluation leads toO(n2Nq)

operations. (Note thatNp andNq are typically of the same magnitude.)
Several methods for the fast evaluation of Eqs. (10) and (11) have been developed

[3, 6, 28]. In [3], for example, an efficient and practical method based on multiresolution
analysis was developed that evaluates Eq. (10) atNp points in

O
(

Np log2

(
1

ε

)
+ n2 log(n)

)
(12)

operations and that evaluates alln2 Fourier coefficients of (11) in

O
(

Nq log2

(
1

ε

)
+ n2 log(n)

)
(13)

operations, whereε is the precision of the computation.
Using the fact thatO(1/h) refined cells arise in two dimensions (see Section 3.4.2),

it is clear thatNp =O(1/h) and Nq =O(1/h). The remainingO(n2) coarse grid cells
may be treated with a fast Fourier transform inO(n2 log(n)) operations. Applying these
relationships, along withh ¿ 1/n, we see that a total of

O((1/h) log2(h) + n2 log(n))

operations arise at each iteration of the spectral discretization of the MBO-method. As was
shown in [22], the MBO-method produces anO(1t2) error in the position of a smooth
curve at each step of the method when two phase regions occur. To avoid degrading this
accuracy (see Section 3.3.1), we selecth =O(1t) to arrive at

O
(

1

1t
log2(1t)

)
(14)

operations per step. For the case of junctions, we may apply the same considerations to
determine that

O
(

1

1t
log(1t)

)
(15)

operations are required per step to avoid degrading the overall accuracy of the method [22].

4. COMPARISON TO THE USUAL FINITE DIFFERENCE DISCRETIZATION

OF THE MBO-METHOD

There are several reasons why the spectral method described in this article is preferred over
the usual finite difference discretization of the MBO-method. These reasons are outlined
below.

1. As has been discussed in Section 3.1, only low frequency modes need to be approxi-
mated, provided1t is not taken very small. A large amount of computational work is saved
by only treating these low frequency modes.
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2. The proposed spectral method does not require any time-stepping betweentstart and
tstart+ 1t . This eliminates a possible source of error and produces large savings in compu-
tational work.

3. Local refinement is much simpler to implement for our approach because it is done
in the context of a quadrature, rather than a discretization of a differential equation.

4. By using a spectral method, the error arising from discretizing the heat equation can
be nearly eliminated. This is an attractive feature, because it makes extrapolation in1t
practical (see [22, 21]), which in turn allows for larger time steps. When larger time steps
are taken, even fewer basis functions are required to solve the heat equation to a given
accuracy. Note that if extrapolation is used to eliminate the leading order error term, the
operation counts (14) and (15) will no longer apply. To avoid degrading the accuracy of
these (potentially) higher order methods requiresO((1t)−3/2 log2(1t)) operations in the
two-phase case andO((1t)−1 log2(1t)) operations in the multiphase case.

5. The original finite difference algorithm must satisfy (2) globally, or part of the front
may erroneously remain stationary. By recursively refining near the interface and interpo-
lating at the finest cell level, our approach eliminates this restriction.

6. The proposed spectral method also gives anO(h3/1t + h2) approximation of the
location of the front, which is greatly superior to the first-order approximation arising for
finite differences. As we saw in the previous section, this improved accuracy, in part explains
why

O
(

1

1t
log2(1t)

)
operations are needed per step for the basic method. This compares very favorably to
the idealized finite difference result for smooth curves,O(1/1t3), which was derived in
Section 2.4.

These are indeed formidable advantages for our proposed method over the usual finite
difference discretization of the MBO-method. To illustrate the performance improvement,
consider the motion by curvature of the kidney-shaped region displayed in Fig. 12. Using
the new, spectral method and an optimized finite difference approach,2 we compare the area
lost over a timet = 0.0125 with the exact answer, 0.0125× 2π (see [17]). From Table I,
we see that our proposed method can easily find solutions to within a 1% error. The finite
difference approach, however, becomes impractical when accurate solutions are sought (see
Table II).

Numerical tests for the problems described in the next section also found that our proposed
discretization often requires less than 0.1% of the computational time of the usual finite
difference discretization of the MBO-method. For this reason, the numerical studies in the
following section are carried out using the new spectral method.

5. NUMERICAL EXPERIMENTS

In this section we report on various experiments using our algorithm. For further quanti-
tative studies for both mean curvature flow and other, more general motions, see [22–24].

2 The difference algorithm uses an adaptive time-stepping method on a uniform mesh. A multigrid technique
was used to solve the implicit equations which arose from a backward Euler time-stepping scheme; see [22].
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FIG. 12. A smooth interface at time,t .

5.1. A Smooth Three-Phase Problem

To begin, consider the motion by curvature of the three-phase problem given in Fig. 13.
Using our new spectral method, the change in the area of the central region was compared
to the exact result,12 × (π/3)(2− 6) × 0.04, which was obtained using the Von Neumann–
Mullins parabolic law [17]. Because anO(

√
1t) error seems plausible from the asymptotic

results given in [22, 23], an extrapolation in the area,(1/(
√

2−1))(
√

2A1t − A21t ), was also
computed to eliminate the conjectured leading order error term. The results for a number
of experiments are given in Table III.

FIG. 13. A smooth three-phase problem: (a)t = 0.0; (b) t = 0.04.
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TABLE I

New Spectral Method

1t h Error Timea

0.003125 2−9 4% 0.4 s
0.00078125 2−11 1% 8 s

Note. aAll timings were carried out on an
HP735/100 workstation.

TABLE II

Finite Difference Discretization

1x Error Time

1
128

4% 85 s
1

512
3% 10341 s

TABLE III

Convergence Study for a Smooth Three-Phase Problem

Error Conv. Error in Conv.
1t h Np Nq in A1t Rate Extrapolation Rate

0.0025 2−11 8.0e+03 1.3e+04 2.60e−03 0.67 −1.08e−03 1.33
0.00125 2−12 1.6e+04 2.6e+04 1.70e−03 0.61 −4.63e−04 1.22
0.000625 2−12 1.6e+04 2.6e+04 1.14e−03 0.57 −2.12e−04 1.13
0.0003125 2−13 3.2e+04 5.3e+04 7.79e−04 0.55 −1.00e−04 1.08

Note. HereNp andNq represent the average values ofNp andNq (see Section 3.5) that arise using a
finest cell width ofh (see Section 3.3). The value ofn is 64 (see Section 3.1). All reported errors are
independent of further cell refinement or larger values ofn.

TABLE IV

Convergence Study for the Disappearance Time

of a Phase Region

1t h Np Nq Error in T 1t Conv. Rate

0.0025 2−9 1.7e+03 1.9e+03 4.61e−02 0.46
0.00125 2−9 1.7e+03 1.9e+03 3.34e−02 0.46
0.000625 2−10 3.1e+03 4.0e+03 2.42e−02 0.46
0.0003125 2−10 3.le+03 3.8e+03 1.75e−02 0.46

Note. Here,n = 64. All reported errors are independent of further cell refinement
or larger values ofn.
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FIG. 14. The evolution of a junction through a singularity: (a)t = 0.000; (b) t = 0.150; (c) t = 0.300;
(d) t = 0.325.

These results support the conjecture that the MBO-method isO(
√

1t) for the case of
junctions and suggest that extrapolation can be used in conjunction with our proposed
method to produce higher order estimates of certain quantities of interest such as phase
areas.

Note. The error arising from our spectral discretization represents less than 1% of the
total error in the extrapolated results. This choice of error tolerance was made to study the
convergence rate of the MBO-method and its extrapolation. Often, however, it is satisfactory
to generate spatial errors which are comparable in size to the time-stepping errors generated
by the MBO-method. For this choice of error tolerance, we found that fewer refinements
were needed and the values ofNp andNq were about one-tenth of those reported in Table III.

5.2. The Evolution of a Junction through a Singularity

The evolution of more complicated problems may also be simulated using our new,
spectral discretization. Consider, for example, the motion by curvature of the three-phase
problem given in Fig. 14. Using our spectral discretization of the MBO-method, estimates
of the disappearance time,T1t , of the smallest phase were compared to the exact answer3

for several1t . The results for a number of experiments are reported in Table IV.
These results are suggestive of an approximatelyO(

√
1t) error for the basic method.

5.3. A Three-Dimensional Example

Interesting examples in three dimensions are also naturally handled by the method. For
example, Fig. 15 displays the motion of a thin-stemmed barbell using a constant step size,
1t = 0.0004. From these images, it is clear that the center handle pinches off to form

3 This result,T = 0.33051, was obtained using Brian Wetton’s front tracking code; see [5].
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FIG. 15. A thin-stemmed barbell moving by mean curvature motion.

two pieces. As expected from [12], these convex shapes become nearly spherical as they
disappear. This simulation used a constant step size,1t = 0.0004 and required about 20 min
of CPU time.

Note that a wider stem can produce a qualitatively different motion. For example, [22]
gives the motion of a thick-stemmed barbell which exhibits no topological shape changes
and eventually becomes ellipsoidal and more spherical as it disappears.

5.4. A Multiple Phase Example in Three Dimensions

The evolution of multiple phase junctions may also be studied using our new spectral
discretization of the MBO-method. For example, Fig. 16 displays the motion by mean
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FIG. 16. A four-phase example moving by mean curvature motion.

curvature of a spherical four-phase shape. From these images, we see that the four-phase
junction is stable under mean curvature motion, as is expected from experimental studies
of recrystallized metal [11]. This simulation used a constant step size,1t = 0.0004 and
required about 45 min of CPU time.
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